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Montréal, Québec H3C 3J7, Canada
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Abstract
Probabilities of crossing on same-spin clusters, seen as order parameters,
have been introduced recently for the critical two-dimensional Ising model
by Langlands, Lewis and Saint-Aubin. We extend Cardy’s ideas, introduced
for percolation, to obtain an ordinary differential equation of order six for the
horizontal crossing probability πh. Due to the identity πh(r)+πh(1/r) = 1, the
function πh must lie in a three-dimensional subspace. New measurements of πh

are made for 40 values of the aspect ratio r (r ∈ [0.1443, 6.928]). These data
are more precise than those obtained by Langlands et al as the 95%-confidence
interval is brought to 4 × 10−4. A three-parameter fit using these new data
determines the solution of the differential equation. The largest gap between
this solution and the 40 data is smaller than 4 × 10−4. The probability πhv of
simultaneous horizontal and vertical crossings is also treated.

PACS numbers: 0550, 1125, 6460A, 6460F

1. Introduction

The probability πh(r) of crossing on open sites inside a rectangle of aspect ratio r has been
measured at pc for several models of percolation in [6] and [7]. These simulations support
hypotheses of universality and conformal invariance of this functionπh(r) and of several others.
Cardy’s contemporaneous work [1] offered a prediction for πh using conformal field theory.
His analytic expression agrees with the simulations within statistical errors and provides further
support that these crossing probabilities are order parameters with the usual critical properties.

This paper presents similar evidence, both numerical and analytic, for crossing
probabilities on same-spin clusters of the two-dimensional Ising model at criticality. These
crossing probabilities are not traditional order parameters for the Ising model. It is not a priori
obvious that they are not identically zero or one in any dimension d. In dimension two however
the simulations carried out in [5] indicate clearly that they are non-trivial functions and that
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they are likely to satisfy the same hypotheses (or even more restrictive ones) of universality and
conformal invariance. Moreover physical quantities for which conformal field theory gives
quantitative predictions that can be readily verified by simulation are always welcome.

Let a triangular lattice be oriented in such a way that sites on horizontal lines are at a
distance of one mesh unit. A rectangle of height V and width H is superimposed on the
lattice. The width H is measured in mesh units but V is the number of horizontal lines in the
rectangle. A configuration of the Ising model has a horizontal crossing if there exists a path
made of edges between nearest-neighbour sites going from the leftmost inner column to the
rightmost one and visiting only plus spins. (Because of the relative position of the rectangle and
the lattice, the vertical columns are made of sites in a zigzag.) Let πh(V ,H) be the probability
at the critical temperature of such a crossing. One defines similarly a vertical crossing and the
associated probability πv(V ,H). It is a well known fact from percolation theory that, on the
triangular lattice, a horizontal crossing on plus spins (or open sites) exists if and only if there
is no vertical crossing on minus spins (closed sites). (One can convince oneself easily of this
simple fact using a drawing.) Since plus and minus spins are equiprobable, this observation
implies πh(V ,H) + πv(V ,H) = 1. In this paper we will ultimately be interested in the limit
πh(r) = limV,H→∞,r=√

3V/2H πh(V ,H) and similarly for πv. The infinite-lattice limit of the
previous relation is known as the duality relation: πh(r)+πv(r) = 1. Ifπh andπv are rotational
invariants, the latter relation can be written as πh(r) + πh(1/r) = 1. This duality relation will
hold for other (regular) lattices if the functionsπh andπv are universal but its discrete equivalent
(πh(V ,H) + πv(V ,H) = 1) hold strictly for neither the square nor the hexagonal lattices.

This paper discusses both a prediction for πh extending Cardy’s approach and precise
measurements of the function πh for 40 values of its parameter r . The agreement will be seen
to be excellent, that is, perfect within statistical errors. The first section covers the theoretical
prediction, the second the details of the simulation and the comparison of the data with the
prediction.

2. A theoretical prediction based on conformal field theory

2.1. Cardy’s prediction for percolation

Cardy’s prediction for πh for two-dimensional percolation proceeds in two steps. He first
identifies the probability πh with the difference of two partition functions with boundary
conditions for the one-state Potts model. He then uses the conformal field theory at c = 0 to
obtain an analytic expression for this difference. Here is a (very rapid) presentation of these
two steps.

The partition function Z(q) of the q-state Potts model on a finite rectangular domain
is the sum over all configurations σ of e−βH(σ) where H(σ) = J

∑
〈x,y〉(1 − δσ(x),σ (y)).

The sum in H(σ) runs over immediate neighbour pairs 〈x, y〉. This can be rewritten as
Z(q) = ∑

R p
B(R)(1 − p)B−B(R)qNc(R), where p = 1 − e−βJ . The sum is over all subsets R

of the set of edges of the lattice in the rectangular domain. The integer B counts the edges
in the lattice, B(R) those in the subset R and Nc(R) the clusters in R. If q = 1 (the value
for percolation), this sum is unity as desired. Let Zαβ be the partition function of the Potts
model for configurations whose spins on the left-hand side of the rectangle are in the state
α ∈ {1, 2, . . . , q}, those on the right in the state β and the others free. Cardy’s first crucial
observation is that πh = (Zαα − Zαβ)|q=1 where α = β. (The difference, for a ‘generic’ q,
contains precisely the configurations that have a cluster intersecting the left- and right-hand
sides.) The problem of calculating πh is therefore transformed into that of calculating partition
functions.
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The possibility of calculating partition functions on finite domains with given boundary
conditions also originates from works by Cardy (see e.g. [2]). In the case of Zαβ , for example,
the four sides of the rectangle are subjected respectively to the boundary conditions α, free, β
and free. Cardy argues that such a partition function is proportional to the four-point correlation
function 〈φ(z1)φ(z2)φ(z3)φ(z4)〉 in the conformal field theory associated with percolation
whose central charge is c = 0. The zi ∈ C are the vertices of the rectangle in the complex
plane and φ is the field that changes the boundary conditions in this theory. For percolation,
this field is identified with φ1,2 and it has conformal weight h = 0, a necessary condition for
〈φ(z1)φ(z2)φ(z3)φ(z4)〉 to be scale invariant. (The indices on φ1,2 refer to the labels of the
Kac table (see [3]).) The rules to find correlation functions in a conformal field theory are well
known and with this identification between partition functions with boundary conditions and
four-point correlation functions, the problem of calculating πh amounts to solving an ordinary
differential equation.

Two obstacles appear in applying these ideas to the Ising model. First, the Ising model
is the q = 2 Potts model and the difference (Zαα − Zαβ)|q=2 cannot be interpreted as the
crossing probability since the factor qNc(R) in the sum gives different weights to the various
configurations that have a crossing from left to right. Second, although the operator for
the Ising model that changes the boundary state from free to a given state α is still φ1,2,
as in percolation, its conformal weight h1,2 is now 1

16 and its four-point correlation is no
longer invariant under a conformal mapping z → w but picks up the usual Jacobian factors:
〈φ(w1)φ(w2)φ(w3)φ(w4)〉 = (

∏
i |w′(zi)|−h1,2)〈φ(z1)φ(z2)φ(z3)φ(z4)〉. These prefactors

(and those additional ones from the presence of vertices along the boundary) seem to contradict
the (strict) conformal invariance observed by simulation in [5].

In [6] and [7] the probability πhv of having simultaneous horizontal and vertical crossings
was also obtained numerically. Watts [8] was able to extend Cardy’s argument to obtain a
prediction that fits extremely well the data. His work is of particular interest to us as he is able
to writeπhv again as a partition function but with more general boundary conditions. Whether a
conformal boundary operator accomplishes the change between these more complex boundary
conditions is not clear. Nonetheless the expression of πhv as a partition function allows us to
expect, Watts argues, that this probability is given by some four-point correlation function. He
seeks it in the h = 0 sector.

2.2. The differential equation for πh

Cardy’s argument for percolation cannot be extended to the Ising model. One can still hope to
relate crossing probabilities such as πh to four-point correlation functions as Watts did for πhv

of percolation. If such a relationship exists, the choice can be narrowed to four-point functions
of the identity family as these are the only ones in the c = 1

2 conformal field theory that are
invariant under the conformal map z → w like πh(r). An obvious objection will be that the
four-point function of the primary field in the identity family is identically unity (or a constant).
For the calculation at hand it might well be that this primary field must be interpreted as one
whose correlation functions satisfy only one of the differential equations corresponding to the
two leading singular vectors. (This would be equivalent to identifying this field with φ2,3 that
lies outside the set of allowed fields.) This milder requirement does not force the function to
be a constant as will be seen immediately.

The Verma module V(c= 1
2 ,h=0) of the Virasoro algebra has a maximal proper submodule

M generated by two singular vectors, one at level 1, the other at level 6. The first of these
is L−1|0〉 and the corresponding differential equation implies that the four-point function is a
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constant. We shall drop this requirement. The other singular vector is

(L−1
6 − 10L−1

4L−2 + 43
3 L−1

2L−2
2 − 100

27 L−2
3 + 97

2 L−1
3L−3 − 337

6 L−1L−2L−3

+ 3185
144 L−3

2 − 381
2 L−1

2L−4 + 1265
18 L−2L−4 + 19 309

36 L−1L−5

− 9005
12 L−6)|c = 1

2 , h = 0〉.
If f (z) is the four-point function with z = (z1 −z2)(z3 −z4)/(z1 −z3)(z2 −z4), the differential
equation is

1

72
(1 − 2 z)(686 z2(1 − z)2 + 73 z(1 − z) + 25)

d

dz
f (z)

+
1

144
z(1 − z)(25 141 z2(1 − z)2 − 2986 z(1 − z) − 171)

d2

dz2
f (z)

+
1

27
z2(1 − z)2(1 − 2 z)(208 − 3595 z(1 − z))

d3

dz3
f (z) (1)

+
1

6
z3(1 − z)3(137 − 737 z(1 − z))

d4dz4

f
(z)

+10 (1 − 2 z)z4(1 − z)4 d5

dz5
f (z) + z5(1 − z)5 d6

dz6
f (z) = 0.

This differential equation has three (regular) singular points at 0, 1 and ∞. It is invariant under
any permutation of these three points. (Invariance under z → 1 − z is clear; invariance under
z → 1/z requires some work.) The exponents at any of these points are 0, 1

6 twice degenerate,
1
2 , 5

3 and 5
2 . The monodromy matrices around the three singular points are similar due to the

symmetry of the equation but they cannot be diagonalized simultaneously.
The cross-ratio z = (z1 − z2)(z3 − z4)/(z1 − z3)(z2 − z4) is related to the aspect ratio

r = √
3V/2H of the rectangle. If the four points z1, z2, z3 and z4 are chosen along the real

axis at − 1
k
,−1, 1, 1

k
, then

k = 1 − √
z

1 +
√
z
.

A Schwarz–Christoffel transformation can be used to map the upper plane onto a rectangle
with the images of the zi at the vertices. The aspect ratio is then given as

r = K(1 − k2)

2K(k2)

where K is the complete elliptic integral of the first kind. The very short but wide rectangles
(r = √

3V/2H → 0+) correspond to z → 0+, the tall and narrow (r → +∞) to z → 1−

and the square to r = 1, z = 1
2 . The function r(z) has the property r(z) = r( 1

z
) and the

symmetry z → 1
z

of the differential equation is thus welcome. If πh does not depend on the
relative angle between the rectangle and the lattice, that is ifπh is a rotational invariant, then the
duality relation implies πh(1) = 1

2 and it can be put in the form ( 1
2 − πh(r)) = −( 1

2 − πh(
1
r
)).

Fortunately the function r(z) is such that r(z) = 1/r(1 − z) and the duality simply states that
the function f (z) = 1

2 − πh(r(z)) is odd with respect to the axis z = 1
2 . An odd subspace of

the solution space of the differential equation (odd with respect with z = 1
2 ) exists due to the

symmetry z → 1 − z and it is of dimension three.
We explored several paths to cast the solutions of equation (1) into analytically tractable

forms. One of them was to write the lhs of equation (1) as
∏

1�i�6(z(1 − z))ai d
dz as Watts did.

However, there is no real solution for the ai in the present case. The most natural path however
is the screening operator method ([4], see also [3]). The pertinent field is φ2,3 (with Kac’s
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labels) and the four-point correlation calls for three contour integrals (a charge Q+Q
2
− must

be added at infinity to assure neutrality). Integral representations of six linearly independent
solutions can be obtained in this straightforward (but probably tedious) way. The main problem
is therefore whether there is sufficient physical information on f to fix the linear combination.
As argued above the odd parity of f reduces the space of solutions to a three-dimensional
subspace. The condition f (0) = − 1

2 (i.e. πh(0) = 1 − πh(1) = 0) is one further linear
constraint. The function f (z) is monotonically increasing but this condition will restrict f
to an open set of the three-dimensional subspace rather than decrease the dimension. The
numerical data presented below indicate that πh(z) → z

1
6 as z → 0+. This is rather striking

in view of the twofold degeneracy of the exponent 1
6 . Two solutions associated with this

exponent can be chosen to behave as z
1
6 and z

1
6 log z for small z and the latter, if present in

f , should dominate the former whenever z is close to zero. The fact that it is not seen in
the simulation could be interpreted physically as a manifestation of the power-law behaviour
of critical correlation functions at short distance. Imposing that the behaviour in z

1
6 log z do

not appear in the linear combination defining f would add one linear constraint. With all
these constraints we would still be left with a one-dimensional subspace in the space of odd
solutions. We have not found any further constraints to fix completely the function f . This is
why we resorted to a numerical fit (see paragraph 3.2).

As we were trying to solve analytically the differential equation, Marc–André Lewis
suggested to us to look for a solution of the form ezd2F1(a, b, c; z), with a, b, c, d and e

constants, that would be odd around z = 1
2 and reproduce the asymptotic behaviour of the

data. Cardy’s prediction for percolation is of this form and the suggestion is natural in this
sense. Such a function exists but it does not satisfy the differential equation. However it
follows so closely the data of [5] (the worst gap is 1%) that we decided to improve these
measurements to answer the question whether it is the hypergeometric function or the solution
of the differential equation, if either, that describes the data.

3. Improved measurements of πh

3.1. Finite-size effects and power-law behaviour

The probabilities πh, πv and πhv at 81 values of r (∈ [0.136, 7.351]) were measured in [5]
for the three regular lattices on rectangles containing around 40 000 sites. For these sizes,
departure from the duality relation is small but still noticeable for the square and the hexagonal
lattices. No attempt was made there to use various sizes in order to reduce finite-size effects.
For the new runs to be presented here we chose to concentrate on the triangular lattice and use
various sizes to approximate the function πh (and the other two, πv and πhv) in the limit when
the mesh goes to zero.

A power law for the finite-size behaviour of critical data is an accepted hypothesis and
our measurements rest upon it. It states that, for sufficiently large size,

|πh(V ,H) − πh(r)| ≈ aV β

with β a negative constant and r = √
3V/2H . We shall use several linear sizes of the form

V = 2iV0 and H = 2iH0. Writing πh(i) for πh(2iV0, 2iH0) and supposing that πh(i) is
decreasing, we can write πh(i)− πh(i + 1) ≈ aV

β

0 2iβ(1 − 2β) and therefore express πh(r) as
πh(i) − aV

β

0 2iβ . To determine the constants a and β requires at least three rectangle sizes as
only the differences (πh(i) − πh(i + 1)) can be used.

What are the right rectangle sizes and what is the required precision on each π̂h(i)? For
the two extreme rectangles that we are planning to measure, rwide =

√
3

2
V0
H0

=
√

3
2

4
24 ≈ 0.1443



1830 E Lapalme and Y Saint-Aubin

Table 1. π̂h for three aspect ratios r and five sizes.

r V0 H0 π̂h(0) π̂h(1) π̂h(2) π̂h(3) π̂h(4)

0.1443 4 24 0.029 265|21 0.025 583|20 0.023 806|19 0.022 949|19 0.022 538|18
0.9897 16 14 0.502 797|46 0.499 753|63 0.498 280|63 0.497 645|63 0.497 321|60
6.928 32 4 0.978 259|17 0.977 944|15 0.977 865|13 0.977 834|16 0.977 859|18

Table 2. Estimates π̂h using subsets of available data.

r 0–2 0–3 0–4 1–3 1–4 2–4

0.1443 0.022 15 0.022 15 0.022 16 0.022 15 0.022 16 0.022 16
0.9897 0.496 9 0.497 1 0.497 0 0.497 2 0.497 0 0.497 0
6.928 0.977 8 0.977 8 0.977 8 0.977 8 0.977 8 0.977 7

and rtall =
√

3
2

32
4 ≈ 6.928, and for a rectangle close to a square, rsq =

√
3

2
16
14 ≈ 0.9897, we

obtained πh(i), i = 0, 1, 2, 3, 4. Each increment corresponds to an increase by a factor of two
of the linear size. For example πh(0) was measured on a rectangle of 4×24 sites and πh(4) on
64×384 sites for the wide rectangle. The results appear in table 1. The samples were large, at
least 250 ×106 configurations. The digits after the vertical bar gives the statistical error on the
digits just before; for example, the first element in the table (0.029 269|21) means that π̂h(0)
is 0.029 269 with the 95%-confidence interval being [0.029 248, 0.029 290]. The differences
between π̂(3) and π̂(4) are however small. In fact the monotonicity of π̂h(i) for rtall = 6.928
is broken for i = 4 even though the error bars do allow for the power law to hold. Larger
samples would definitely be required for the large lattices. Fortunately the precision on the
measurements for i = 0, 1, 2 and the fact that the power law seems to hold for very small sizes
(four sites in one direction!) allow for good estimates of πh(r) without these larger lattices.
Table 2 shows estimates of πh for rwide, rtall and rsq using the power-law hypothesis and a subset
of the measurements of table 1. The notation i–j means that π̂h(i), π̂h(i + 1), . . . , π̂h(j) were
used to obtain π̂h(r). Using only the three smallest lattices, the three largest or the five ones
leads to estimates π̂h(r) that differ by less than four units on the fourth significant digits. We
therefore decided to use only three sizes for each r considered and choose the pairs (V0, H0)

in such a way that V0, H0 � 4 and that V0H0 � 96. All samples were larger or equal to 108.
Table 3 gives the results for πh, πv and πhv at 40 values of r ∈ [0.1443, 6.928].

There is always, on a finite lattice, the problem of determining r from the numbers V and
H . The two simplest choices are the aspect ratios of the smallest or the largest rectangles that
include the sites considered and only those. Even though it is not a natural choice, the aspect
ratio of the tallest and narrowest rectangle would be another convention. The method we have
used to determine πh(r) overcomes this imprecision due to convention. For any convention the
aspect ratio for a rectangular subset of the triangular lattice will be

√
3

2 (V +)V )/(H +)H)with
)V and )H dependent on the convention but independent of V and H . The ratio r at which
πh is measured is therefore limi→∞

√
3

2 (2iV0 +)V )/(2iH0 +)H) =
√

3
2 V0/H0, independent of

)V and )H , that is independent of the convention. This is another advantage of using several
lattices for a given r .

Even though πh (and πv) is invariant under rotation, finite-size effects are not. The
differences between π̂h(0) = 0.029 27, π̂h(1) = 0.025 58 and π̂h(2) = 0.023 81 for
r = 0.1443 are much bigger than those between π̂v(0) = 0.021 74, π̂v(1) = 0.022 05 and
π̂v(2) = 0.022 14 for 1/r = 1/6.928 = 0.1443. The statistical errors on π̂h(0.1443) and
π̂v(6.928) are therefore different even if the two numbers turn out to be very close (0.022 15



Crossing probabilities in the 2D Ising model 1831

Table 3. The measurements π̂h, π̂v and π̂hv.

r V0 H0 π̂h π̂v π̂hv

0.1443 4 24 0.022 15 0.977 9 0.022 15
0.1624 6 32 0.033 21 0.966 8 0.033 21
0.1732 6 30 0.040 57 0.959 4 0.040 57
0.1999 6 26 0.060 82 0.939 2 0.060 82
0.2165 6 24 0.074 00 0.925 7 0.074 00
0.2362 6 22 0.090 62 0.909 3 0.090 61
0.2665 8 26 0.116 6 0.883 0 0.116 6
0.2887 6 18 0.135 9 0.864 7 0.135 9
0.3248 6 16 0.166 2 0.834 1 0.166 1
0.3464 8 20 0.183 4 0.816 4 0.183 1
0.3849 8 18 0.213 3 0.786 5 0.212 7
0.4330 8 16 0.248 3 0.751 8 0.246 8
0.4949 8 14 0.289 1 0.711 1 0.285 2
0.5413 10 16 0.316 3 0.683 3 0.309 6
0.6186 10 14 0.357 2 0.642 9 0.343 6
0.6662 10 13 0.379 7 0.620 2 0.360 0
0.7423 12 14 0.412 4 0.587 8 0.380 4
0.8660 10 10 0.458 0 0.542 1 0.399 7
0.9326 14 13 0.479 7 0.520 3 0.404 2
0.9897 16 14 0.496 9 0.502 8 0.405 9
1.010 14 12 0.502 9 0.497 3 0.405 8
1.066 16 13 0.518 3 0.481 2 0.404 3
1.155 16 12 0.541 9 0.457 8 0.399 6
1.299 12 8 0.576 7 0.423 2 0.386 0
1.540 16 9 0.627 7 0.371 7 0.354 4
1.732 16 8 0.663 9 0.336 4 0.326 9
1.949 18 8 0.699 9 0.300 1 0.295 2
2.165 20 8 0.731 8 0.267 9 0.265 5
2.309 16 6 0.751 6 0.248 4 0.246 9
2.598 18 6 0.786 4 0.213 5 0.212 8
2.887 20 6 0.816 3 0.183 5 0.183 3
3.175 22 6 0.841 8 0.158 0 0.157 9
3.464 24 6 0.864 3 0.135 7 0.135 7
3.753 26 6 0.883 4 0.116 6 0.116 6
4.330 30 6 0.913 7 0.086 23 0.086 23
4.619 32 6 0.925 9 0.074 16 0.074 16
5.196 24 4 0.945 2 0.054 89 0.054 89
5.629 26 4 0.956 3 0.043 70 0.043 70
6.062 28 4 0.965 1 0.034 89 0.034 89
6.928 32 4 0.977 8 0.022 18 0.022 18

and 0.022 18). In the worst cases the 95%-confidence interval amounts to less than two units
on the third significant digit (e.g. π̂h(0.1443) = 0.022 15 ± 0.000 15). At the centre of the
range of r the error on π̂h(r) decreases to four units on the fourth digit and it is even smaller
for large r . Over the whole range it is smaller than 4 × 10−4 for both πh and πv.

The improvement upon previous measurements found in [5] can be checked easily. Among
the 40 values of r used there are nine pairs ((Va,Ha), (Vb,Hb)) such that

ra =
√

3

2

Va

Ha

=
(√

3

2

Vb

Hb

)−1

= 1

rb
.
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πh(r1) – πv(r2)
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Figure 1. Differences π̂h(ra) − π̂v(rb) and π̂hv(ra) − π̂hv(rb) for several pairs (ra, rb = r−1
a ).

The pairs (ra, 1/ra) are those corresponding to the following lines of table 3: (1, 40), (5, 36),
(7, 34), (8, 33), (10, 31), (11, 30), (12, 29), (18, 23) and (20, 21). The measurements for
these pairs should satisfy π̂h(ra) = π̂v(rb), π̂v(ra) = π̂h(rb) and π̂hv(ra) = π̂hv(rb) within
statistical errors. This turns out to be the case (see figure 1). There are in total 27 independent
comparisons. Their relative errors are always less than 2 × 10−3. The largest occur when
the quantities π̂ being compared are themselves very small, such as π̂h(

√
3

2
1
6 ) = 0.022 15 and

π̂v(
√

3
2 8) = 0.022 18. In all cases the absolute values of these differences are less than 5×10−4.

These variations are not only small, but in addition they are of both signs. This fact is a further
indication that the power-law hypothesis provides a very good approximation. Suppose indeed
that, at the sizes used, correction terms are required: |πh(i) − πh(r)| ≈ aV β(1 + b

V
+ · · ·).

These new terms would lead to a systematic error that is not seen here.

3.2. A prediction for πh for the critical Ising model

The first easy comparison between the theory developed in the first section and the new data
lies in the asymptotic behaviour of πh as r approaches 0 and +∞. If πh is a solution of the
differential equation (1), then logπh(r) → −λπ/r as r → 0 and log(1 − πh(r)) → −λπr as
r → +∞ with λ one of the exponents. Using the ten extreme values of r on each side of the
measured interval, we obtain for πh

log π̂h(r)−→
r→0

−0.166 48π
1

r

log(1 − π̂h(r))−→
r→∞ −0.166 57πr.

The slopes obtained using the data forπv are 0.166 47π and 0.166 54π . These numbers are very
close to the exponent 1

6 , the smallest non-vanishing exponent of the differential equation (1).
This is remarkable! Clearly λ is to be interpreted as a critical exponent of the Ising model,
but none of the usual exponents of the Ising model contains the prime number 3 in their
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Figure 2. The prediction logπh/(1 −πh) as a function of log r together with the 40 measurements
π̂h(ri ).

denominators and scaling laws involve only products and integral linear combinations of these
exponents. If this new critical exponent can be deduced from the usual ones, it will not be by
traditional scaling laws.

The second test is to obtain a solution of the differential equation (1) that describes
the data. Let fi, i = 0, 1, . . . , 5, be a basis of solutions for equation (1) defined by their
behaviour at z = 1

2 : f
(j)

i (z = 1
2 ) = δij . Since f (z) = 1

2 − πh(r(z)) is odd with respect
to z = 1

2 , it lies in the subspace of functions of the form af1 + bf3 + cf5. We determine

the constants a, b and c by requiring that L = (
∑

i (
1
2 − π̂h(ri) − f (z(ri)))

2)
1
2 be minimum.

The sum is over the 40 data. The three solutions f1, f3 and f5 were obtained numerically.
Both MATLAB and Mathematica give similar fits. These softwares have internal parameters
controlling the required accuracy of the integration. These parameters can be pushed to a point
where a stronger requirement does not lead to any significant improvement on the minimum
of L. Figure 2 has been drawn using the values a, b and c obtained for control parameters
beyond this point. The largest among the differences | 1

2 − π̂h(ri) − f (z(ri))|, i = 1, . . . , 40,
is 3.6 × 10−4, smaller than the statistical error, and the standard deviation is 1.5 × 10−4.
Similar results are obtained for πv. The agreement is therefore excellent. As a comparison
it is instructive to redo Cardy’s calculation testing his prediction for percolation. Since the
publication of [1], better data were obtained for percolation by sites on a square lattice for
81 rectangles with at least 106 sites [7]. The samples contained over 106 configurations.
For these, the statistical errors are approximately 10−4 at the extremities of the interval
(r ∈ [0.142, 7.067]) and 10−3 in the middle. (At the extremities these data are therefore
more precise than the present ones for the Ising model and at the centre they are less precise.)
The largest departure from duality is 4 × 10−4, almost exactly what is seen in figure 1 for the
present data. Comparing his prediction π

perco
h (r(z)) = 3+( 2

3 )z
1
3 2F1(

1
3 ,

2
3 ,

4
3 , z)/+(

1
3 )

2 with
the data leads to max1�i�81 |πperco

h (r(zi))− π̂h(ri)| = 7.8 × 10−4 and to a standard deviation
of 4.2 × 10−5. These results are similar to those just reported.

We mentioned earlier the possibility of describing the data with a hypergeometric function.
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The function

g(z) = 6+( 1
3 )

+( 1
6 )

2
z

1
6 2F1

(
1

6
,

5

6
,

7

6
; z
)

is odd around z = 1
2 , when shifted by 1

2 , and behaves as z
1
6 and (1 − z)

1
6 when z → 0+ and

z → 1−. Several data are now more than 2 × 10−3 apart from the corresponding values of g,
a gap barely visible on a figure, but clearly out of any reasonable confidence interval. We may
accept the solution of the differential equation as an analytic prediction for πh but we must
reject the function g(z).

Measurements were also made of the probability πhv. As its behaviour at z = 0 and 1
is also described by the exponent 1

6 , one may hope that the even subspace (around z = 1
2 ) of

the differential equation may contain a solution matching the data. This is not the case. The
best fit in this subspace lies up to 6 × 10−3 away from the data, an unacceptable gap. (This
disagreement has an advantage. It shows that the success of the fit for πh is not a consequence
of the large freedom that a three-parameter fit gives.) Watts used the third singular vector to
describe πhv for percolation. In the Verma module Vc=0,h=0, this vector is at level five, leading
to a differential equation of order five. However the third one in Vc= 1

2 ,h=0 is at level 11 and the

associated operator P(z, d
dz ) is a polynomial of order 11 in d

dz . It can be cast as

P

(
z,

d

dz

)
=

∑
1�i�11,iodd

(z(1 − z))i−1pi(z(1 − z))
di

dzi

+
∑

2�i�10,ieven

(1 − 2z)(z(1 − z))i−1pi(z(1 − z))
di

dzi

with

p1(u) = − 1
81 u(−484 − 20 465 u + 120 702 u2 + 134 456 u3 + 326 536 u4)

p2(u) = − 1
81 (−484 − 65 267 u + 555 942 u2 + 2 442 422 u3 + 9 038 782 u4)

p3(u) = 1
162 (44 318 − 1 002 950 u − 5 132 553 u2 − 12 317 152 u3 + 245 463 307 u4)

p4(u) = 1
486 (−412 839 − 8 111 249 u − 42 237 350 u2 + 749 236 363 u3)

p5(u) = − 1
1944 (3492 203 + 28 198 986 u − 1347 384 726 u2 + 5106 251 212 u3)

p6(u) = − 7
1944 (368 339 − 27 634 444 u + 153 070 553 u2)

p7(u) = 11
1296 (554 551 − 9066 926 u + 29 200 567 u2)

p8(u) = 11
54 (−11 842 + 75 835 u) p9(u) = − 11

18 (−757 + 3457 u)

p10(u) = − 110
3 p11(u) = 1.

The differential equation P(z, d
dz )f (z) = 0 is again symmetric under any permutation of the

three regular singular points 0, 1 and ∞. The exponents (with their degeneracies) are 0 (2), 1
6

(2), 1
2 (1), 1 (1), 5

3 (2),
5
2 (1),

14
3 (1) and 6 (1). The even subspace of the differential equation

is of dimension six and the fit will therefore contain six parameters. Using the data of the
last column of table 3 and numerical integration of the differential equation, we obtain a best
fit (in the same sense as that used for πh) that has a largest difference of 2.7 × 10−4 and a
standard deviation of 1.3 × 10−4. These are excellent results well within the experimental
windows. However we have tried to fit similarly the function h(z) = κz

1
6 (1 − z)

1
6 with the

constant κ chosen such that h(z = 1
2 ) = π̂hv(z = 1

2 ). While this function is not a solution, the
six-dimensional subspace of (numerical) even solutions contains a solution h̃ that approaches it
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extremely well (namely maxz∈[0,1] |h̃(z)−h(z)| ≈ 10−6). Consequently the large dimension of
the even subspace allows for functions that are not solutions to be fitted within statistical errors
and the fit for πhv is much less convincing than that above for πh or than Watts’ prediction.
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